SUB-HARMONIC RESONANCE, ITS STABILITY, BIFURCATION
AND TRANSITION TO CHAOS IN A CLASS OF INERTIALLY

NONLINEAR OSCILLATORS

By

Ashraf Abdel-Majeed Al-Shalalfeh

Supervisor

Dr. Mohammed N. Hamdan, prof.

This Thesis was submitted in Partial Fulfillment of the Requirements for the

Master’s Degree of Science in Mechanical Engineering

Faculty of Graduate Studies

The University of Jordan

May,2005

www.manaraa.com



i

This thesis (Sub-harmonic Resonance, Its Stability, Bifurcations And Transition
To Chaos in a Class of Inertially Nonlinear Oscillators) was successfully defended and

approved on May 12™ 2005.

Examination Committee Signature

Dr. Mohammed Nader Hamdan, Chairman @Q{}/ﬁ -;--- 2

Prof. of Applied Mechanics - Mechanical Engineering

Dr. Saad Habali, Member

Prof. of Applied Mechanics - Mechanical Engineering

Dr. Mohammed Alkilani, Member

Assistant Prof. of Applied Mechanics - Mechanical Engineering

Dr. Mohammed Ashhab, Member _M.L-S..@_’.W._Z_
Assistant Prof. of Applied Mechanics -Mechanical Engineering

(Alhashmieh University)

www.manaraa.com




il

ACKNOWLEDGMENT

I would like to thank first and foremost my family for giving me the chance
and support to fulfill my studies. Moreover, would like to give my thanks to my
colleagues & teachers in University Of Jordan that have made a year’s long effort

to a fun learning experience.

A grateful thank has to be addressed to Prof. Mohammed N. Hamdan that
even though his tight time table always found time to help me when I needed, and
for his excitement that really motivated the curiosity of me, with hope that this
study won’t let him down.

This study and this effort are dedicated to my father that with lifetime hard work

has given me much inspiration.

www.manaraa.com



v

DEDICATION

To My Family...

Who Built My Heart, Soul & Mind.

www.manaraa.com




LIST OF CONTENTS

Subject

Committee decision
Acknowledgement

Dedication

List of contents

List of figures

Nomenclature

Abstract

Introduction

Literature survey

The method of multiple scales
The method of harmonic balance
Chaos diagnostic tools

Results and discussion of results
Recommendations

References

Abstract in Arabic

Page

ii
iii

iv

vi
viil

ix

10
13
23
33
40
59
60
65

www.manaraa.com



Figure 1

Figure 2

Figure 3

Figure 4

Figure S

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Vi

LIST OF FIGURES

Numerical solution: € =1,& =0,¢,=0.1,6 =0.1, P =4,

Q =4,u(0) =1, 1(0) = 0.

Numerical solution:s =1, =0,g, =0.1,0 =0.1, P =14,

Q =4,u(0) =1, 1(0) = 0.

Numerical solution: & =1,& =0,g, =0.1,0 =0.1, P =14,

Q =4,u(0) =5, #(0) = 0.

Numerical solution:s =1, =0,g, =0.1,0 =0.02, P =4,

Q = 4,u(0) = 5, 1(0) = 0.

Numerical solution:s =1, =0,g, =0.1,6 =0.02, P =8,

Q = 4,u(0) = 5, 1(0) = 0.

MMS, 2MHB and Numerical solution: ¢ =1, &, =0.02,
£,=02,0=0.01, P=5.

MMS, 2MHB and Numerical solution: ¢ =1, &, =0.2,
g, =0.02,06 =0.01, P =1.

MMS, 2MHB and Numerical solution: € =1, &, = 0.1,
£,=010=00LP=1.

MMS, 2MHB and Numerical solution:s =1, &, =0.1,
g, =0.05,6 =0.01, P=1.

Approximate (MMS) results : ¢ =1, &, =0.02, ¢, =0.2,
0=0.01, P=5.

Approximate (MMS) results : ¢ =1, &, =0.2, &, =0.02,
0=0.01,P=1.

Approximate MMS solution: s =1,&, =0.1, &, =0.1,
0=0.01,°=1.

Approximate 2MHB solution: ¢ =1,&, =0.2, &, =0.02,
0=0.01, P=5.

Approximate 2MHB solution :s =1, &, =0.02, &, =0.2,
0=0.01,°=1.

Approximate 2MHB solution: ¢ =1,&, =0.1, &, =0.1,
0=0.01°P=1.

42

42

43

43

44

45

46

46

47

48

48

49

49

50

50

www.manaraa.com



vii

Figure 16 Lyapunov exponents. s =1, =0.02, &, =0.2, 5 =0.01, 51
P=5Q=35u(0)=1.75,u(0)=0.

Figure 17 Numerical solution: & =1,g, =0.01, &, =0.1,5 =0.01, 52
P=14,Q =314, u(0) = 5, 11(0) = 1.

Figurel7 (d) Lyapunov exponents.e =1,¢, =0.01, &, =0.1, 5 =0.01, 52
P=14,Q =3.14,u(0) = 5, u(0) = 1.

Figure 18 Numerical solution: & =1,g =0.1,&, =0.02, 5§ = 0.01, 53
P=80Q=12 u0)=5,u0)=1

Figure 19 Numerical solution: & =1, ¢, =0.1, &, =0.05, 6 =0.01, 53
P=9,Q=12,u(0) =4, 1(0) =1

Figure 20 Numerical solution: & =1, =0.01,&, =0.1,5 =0.01, 54
P=14,Q =284 u(0)=5,1(0) =5

Figure 20 Lyapunov exponents.£ =1, &, =0.01,&, =0.1,5 =0.01, 54

) P =14, Q =2.84,u(0) = 5, i(0) = 5.

Figure 21 Numerical solution: & =1,¢, =0.01,&, =0.1,5 =0.01, 55

P=14,0=2.843, u(0) = 6, 1(0) = 5

www.manaraa.com




viii

NOMENCLATURE

Forcing Frequency (radians)
Natural frequency (radians)
Damping Coefficient
Detuning Parameter

Force Amplitude
Perturbation Parameter

Coefficient of Inertial nonlinearity
Coefficient of Static nonlinearity

Displacement
Variation of (u)
Real time (sec.)

Slow time scale

Fast time scale

oT,

1

Amplitude of generating (particular) solution

. Amplitude of assumed HB solution

Phase angle
Characteristic determinant

Lyaponuv exponents

Radical

www.manaraa.com



ix
SUB-HARMONIC RESONANCE , ITS STABILITY, BIFURCATION
AND TRANSITION TO CHAOS IN A CLASS OF INERTIALLY
NONLINEAR OSCILLATORS
By
Ashraf Abdel Majeed Al-Shalalfeh

Supervisor

Dr. Mohamad N. Hamdan, prof.

ABSTRACT

This work presents approximate analytical and numerical investigations into the 1/3-
sub-harmonic resonance response, its stability, bifurcations and transition to chaos for
the class of inertially and elastically nonlinear, harmonically excited single degree of

freedom oscillators described by the dimensionless equation of motion:
i+ ou+u+e Wi +ui’)+e,u’ = Pcos(Q)
where J,g,,e,and P are dimensionless positive parameters, € is the forcing

frequency and uis the dimensionless displacement. The interest is the case where the
forcing frequency is in the range where the steady state response of this oscillator is
dominated by the 1/3 sub-harmonic. Approximate analytical solutions to the 1/3 sub-
harmonic resonance curves are obtained, for comparison purposes, using the two modes
harmonic balance (2MHB) method as well as the multiple scales (MMS) perturbation
method. Stability analyses of the obtained approximate solutions were used to examine
the link if any between the transition to chaos and stability limits of these approximate

solutions. A number of well known numerical simulation procedures, i.e. phase plane
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plots, Poincare' maps, Lyapunov exponents, frequency spectra and direct integration of
equation of motion were used to verify theoretical results and observe chaotic behavior.

Results of typical steady state behavior of the above oscillator are presented in graphical
form for a selected range of system parameters. It is shown that first order approximate
solutions, despite their limited quantitative and qualitative accuracies, when combined
with relatively simple well known numerical methods, can provide a useful mean to
uncover important aspects of the complicated dynamic behavior of a harmonically

forced single degree of freedom nonlinear oscillator.
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INTRODUCTION

1 Sub-harmonic resonance and chaos

One of the most interesting characteristics of the steady state response of a
nonlinear single degree of freedom oscillator to a harmonic excitation is that the
nonlinearity can  generate, in addition to the usual primary harmonic component,

harmonic components whose frequency €2 is a sub-multiple or a multiple of the

P

harmonic excitation frequency Q. The harmonic component whose frequency is Q//

n ) 1 . n .
orTQ, i1s called an order ; sub-harmonic or an order 7 ultra-sub-harmonic,

respectively, where 7,/ are integers. On the other hand, a harmonic component which

has a frequency »nQ is called an order n super-harmonic or, usually, an order n
ultra-super-harmonic when 7n > 4. Depending on system parameters, nonlinearity type
and range of excitation frequency, the nonlinearity can sustain a resonant , i.e large
amplitude, steady state sub or super-harmonic response [1-15]. It is noted that a
positively damped, linear oscillator has only a single limiting set, i.e an attractor
(repellor) when positively (negatively)damped, where the whole phase space is the
catchment (repelling) region. Thus regardless of the starting conditions, the steady state
response of the linear oscillator to a harmonic excitation either settles into a point
(periodic) attractor (if positively damped) , or diverges to infinity when it is limiting set
is a repellor ( when the oscillator is negatively damped) .In other words, in a
positively damped , harmonically driven linear oscillator the steady state response 1is
independent of the initial conditions, is harmonic with the same frequency as the

excitation, the frequency response is single valued , and the free oscillation decays to
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zero at the steady state. On the other hand, for a harmonically driven nonlinear
oscillator the free oscillation may not decay to zero even when the oscillator is
positively damped. Also at steady state the oscillator may have multiple competing
(coexisting) attractors (e.g.; periodic, limit cycles, quasi-periodic, aperiodic and chaotic)
each with its basin of attraction separated by repellors and saddle limiting sets [1-4].
Thus depending on the starting conditions and range of system parameters, the response
of the harmonically driven nonlinear oscillator may show a drastic quantitative as well
as qualitative change as one or more of its control parameters (i.e. frequency or
amplitude of the harmonic excitation) goes through a critical (i.e. bifurcation) value
and enters the catchment region of a nearby or a distant attractor. For example, for the
classical , positively damped , harmonically driven , duffing oscillator with cubic
hardening nonlinearity, the steady state response when the excitation frequency Q is in
neighborhood of the linear natural frequency @ of the oscillator ( i.e. in the primary
resonance region) is dominated by the fundamental harmonic. Also, in this case, the
free oscillation dies out, and the frequency response curve consists of three braches: two
stable branches (attractor) separated by an unstable branch ( repellor). Thus, for given
system parameters and excitation frequency the initial conditions play a crucial role in
determining which of the two coexisting stable steady states solutions (i.e. attractors)

represents the actual response of the oscillator.

Now, consider the case where the excitation frequency Q in the above Duffing
oscillator is gradually increased above the linear natural frequency®. When Q is
increased from Q ~ 3w, it is possible , depending of system damping, forcing amplitude
and initial conditions, for the system at steady state to sustain the free oscillation in

addition to the primary steady state response, even when the oscillator is positively
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damped and in contrast with the linear theory prediction. Thus , in this case, at the
steady state , the cubic nonlinearity seems to adjusts the frequency of free oscillation to
about one third of the forcing frequency so that the total response ,which now consists
of the free oscillation term (with frequency ~ Q/3, i.e. a 1/3™ sub-harmonic term ) and

particular term ( with frequency Q), is periodic with period r which is about three

. . 671 o
times that of the fundamental 7; i.e.: 7 =37, = o Furthermore, as the excitation

frequency Q is gradually increased from Q= 3® , the amplitude of the excited 1/3
rd sub-harmonic tends to increased and that of the fundamental harmonic ( i.e.
amplitude of the particular solution) tends to decrease and becomes nearly equals to that
of the corresponding linear oscillator , so that the steady state periodic response
becomes dominated by the 1/3 rd sub-harmonic component. Depending on forcing
amplitude and system damping, it is possible to excite a steady state sub-harmonic
response, i.e. a sub-harmonic resonant response, with magnitude much larger than that
of the fundamental response. In other words, the oscillator now has in addition to the
fundamental attractor another coexisting distant (i.e. of larger amplitude) sub-harmonic
attractor. Thus , depending on initial conditions , a steady state fundamental response
of relatively small amplitude may loss stability and moves to a sub-harmonic attractor
with much large amplitude as a system parameter, i.e. excitation amplitude, goes
through a critical bifurcation value leading to violent large amplitude vibrations. This
sudden and sub-critical loss of stability of a dynamical system operating above primary
resonance region has been reported in several practical engineering systems; i.e., (see
Nayfeh and Mook [1]) an airplane engine running at an angular speed much larger than
that of the airplane parts natural frequencies was reported to lead under certain

operating conditions to violent vibrations of some of these parts.
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It is noted that for a frequency of excitation Q below the oscillator linear
frequency @, it is possible, depending on initial conditions and system parameters, to
excite a super-harmonic resonant response, again due to the fact that, like in the case of
sub-harmonic resonance region, the free oscillation term in the total solution may not
decay to zero even when the nonlinear oscillator is positively damped [1]. Thus, for
example , for the positively damped , harmonically driven Duffing oscillator with cubic

hardening static nonlinearity, a super-harmonic resonance may get excited for the right
system parameters and initial conditions when Q is in the range Q ~ ga) However,

the super-harmonic resonance response, unlike the sub-harmonic one, has the same
period as the excitation; its amplitude usually grows steadily from a negligible value to
a value comparable or larger than that of the fundamental harmonic without any
bifurcation.

It should be borne in mind that a key aspect of the steady state response of a nonlinear
single degree of freedom to harmonic excitation, i.e. primary and secondary resonances,
discussed above is that they are periodic. The classical theory postulate that a
nonlinear, positively damped , single degree of freedom oscillator subjected to a
periodic ( i.e. harmonic) excitation will always have a periodic steady state output,
has been challenged since 1970's by the new theory of chaotic motions. During the last
three decades numerical simulation studies and experimental investigations have shown
that the nonlinear oscillator may possess solutions which were not only aperiodic, but
which also have a noisy (i.e. random- like) behavior. It is noted that not all of obtained
analytic periodic solutions of a nonlinear oscillator are stable (attractors). Also, as
indicated above, it is possible that some of coexisting attractors are non-periodic (i.e.
chaotic) which cannot be uncovered using the approximate analytical methods of

nonlinear theory. Consequently, recent research efforts aiming at obtaining a realistic
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assessment of a nonlinear system dynamics and synthesis of a reliable control strategy
tend to carry out a detailed stability and bifurcation analyses to uncover various possible
dynamic systems bounded periodic, aperiodic, chaotic and unbounded motions.
Methods used to carry out such tasks, which usually are rather elaborate even when the
analysis is only carried out to first order, are a combination of approximate analytic,
geometric and numeric methods, [1-4, 16-23]. Each of these methods has its
advantages and drawbacks; a detailed discussion of these techniques goes beyond the
scope of this overview and can be found somewhere else, e.g. [1, 2, 16-18]. Stability
analysis and numerical simulation studies of sub-harmonic resonance in various types of
harmonically excited Duffing oscillators have shown that chaotic motions are associated
with the loss of stability of a sub- or super- harmonic resonance, i.e. one characteristic
precursor to chaotic motions is the appearance and then loss of stability of a sub- or
super-harmonic resonance, e.g. [19-22, 24-31]. Studies dealing with approximate
analytic-numeric stability and bifurcation analyses of sub-harmonic resonance and its
transition to chaos in single degree of freedom nonlinear oscillators have to the author's
best knowledge, been limited , except in few cases, to first order approximations and to
statically stable and unstable oscillators with only static nonlinearity [25 -31]. These
studies have shown that the zone of a chaotic motion in the response of various types of
the classical duffing oscillator is found as a transition zone between a secondary (sub-
or-super-harmonic) resonance solution and the corresponding fundamental harmonic
solution in the neighborhood of points of vertical tangency (the stability limits) on the
sub-(super)-harmonic resonance. Consequently, several efforts have been made to
analytically seek a link between stability limits of sub-harmonic solutions and the onset
of chaotic motions [25-29]. In fact one of the most celebrated scenario for chaotic

motion development is the continuous sequence of periodic doubling (1/2 sub-
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harmonic) bifurcations [19-22]. In this scenario, as a system control parameter, i.e.
forcing frequency or forcing amplitude ,is changed a periodic response, i.e. a period T
motion, undergoes a bifurcation or change to another period 2T motion , i.e. the new
motion has twice the period of the original motion. As the control parameter is
changed further, the oscillator period 2T motion bifurcates to a period 4T motion; then
the 4T motion bifurcates to 8T motion...etc. This bifurcation scenario continues until the
control parameter reaches a critical value (defined by Feigenbaum scaling rule, see, i.e.,
[19-21]) beyond which the oscillator motion may become chaotic. Furthermore,
numerical simulation results have shown some chaotic attractors in several nonlinear
systems to contain windows (pockets) of stable sub-harmonic orbits, e.g. [19, 24]. This
led to some authors' view [19]: "some chaotic attractors are in fact nothing but an
ensemble of many long sub-harmonics, whose basins are so small and close together
that the slightest amount of noise moves experimentally observed trajectories from one
sink to another, giving the appearance of chaos". Finally, it is noted that sub-harmonics
provide a useful means in basic electromechanical timing mechanisms to gear down in
stages from a high frequency electrical input to a low frequency output appropriate for a

mechanical drive [2].

In summary, the study of stability and bifurcations  of the sub-harmonic

resonance response in nonlinear oscillators are crucial due the following facts:

1- A dynamic system operating in the sub-harmonic resonance region (i.e. at high
rotational speed) may undergo a sub-critical loss of stability to a violent and destruction
sub-harmonic vibrations.

2- The appearance of sub-harmonics and their stability loss are associated with the

possibility of generating aperiodic and chaotic steady state motions.
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2 Objective of the thesis

In light of the above overview , this research aims at obtaining analytical
approximations to the 1/3" sub-harmonic resonance response and studying its stability,
bifurcations and transition to chaos , in the class of harmonically driven oscillators with

inertial and elastic symmetric nonlinearities:
i+ 0u+u+g Wii+ui’)+e,u’ = Pcos(Qf) (1)
Where 0,¢,,6,and P are dimensionless positive parameters, € is the forcing

frequency and u is the dimensionless displacement. The interest is the case where the
forcing frequency is in the range where the steady state response of this oscillator is
dominated by the 1/3 sub-harmonic. Approximate analytical solutions to the 1/3 sub-
harmonic resonance curves are obtained, for comparison purposes, using the two modes
harmonic balance (2MHB) method as well as the multiple scales (MMS) perturbation
method. Stability analyses of the obtained approximate solutions are used to examine
the link if any between the transition to chaos and stability limits of these approximate
solutions. A number of well known numerical simulation procedures, i.e. phase plane
plots, Poincare' maps, Lyapunov exponents, frequency spectra and direct integration of
equation of motion are used to verify theoretical results and observe chaotic behavior.
Results of typical steady state behavior of the above oscillator are presented in
graphical form for a selected range of system parameters. It is shown that first order
approximate solutions, despite their limited quantitative and qualitative accuracies,
when combined with relatively simple well known numerical methods , can provide a
useful mean to uncover important aspects of the complicated dynamic behavior of a

harmonically forced single degree of freedom nonlinear oscillator.
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3 Significance of this work

The interest in the nonlinear dynamic response of the class of oscillators
governed by equation (1) lies in the different physical systems that it models, such as
the in-plane flexural vibrations of an in- extensible non-rotating and rotating beam
element [32-35]. The demands in modern machinery designs for lighter weight, higher
flexibility and higher operating speeds (i.e. speeds above the fundamental natural
frequency ) makes such highly flexible and light machine elements susceptible to
"dangerous sub-harmonic resonances. Also the design of a proper strategy to control the
motions and suppress the vibrations of such machine elements requires carrying out a
detailed stability and bifurcation analyses to uncover their various possible dynamic
behaviors. Furthermore, as indicted in the previous section, most of the existing
theoretical analyses of sub-harmonic resonances deal with oscillators with static
hardening or static softening nonlinearities. On the other hand, the above oscillator
includes both hardening and inertial softening nonlinearities, where each of these

nonlinearities alone leads to qualitatively different frequency characteristics.

Direct numerical integration and basic methods of Lyapunov exponents,
Poincare maps, frequency analysis and phase plane plots will be used to check the
validity of the obtained approximate analytic results and examine system chaotic

behaviors.
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4 Layout of this Thesis

This thesis is divided into seven chapters. The first chapter is an introduction. It
provides an overview of the importance of studying sub-harmonic resonance and its
association to chaotic motion. Also, this chapter includes the thesis objectives and
layout. Chapter (2) presents a review of relevant literature. Chapter (3) includes the
approximate analytic solution obtained using the harmonic balance method and its
stability analysis. The analytic solution obtained using the method of Multiple-Scales
(MMS) and its stability analysis are given in Chapter (4). Chapter (5) includes a
summary of the methods used for chaos detection. The obtained theoretical and
numerical results are presented and discussed in Chapter (6). In Chapter (7) conclusions

and recommendations of this work are presented.

Ol LAC U Zyl_ilsl
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LITERATURE SURVEY

1 Introduction

The study of sub-harmonic resonance response and its stability analysis in single
degree of freedom systems under harmonic excitation have been treated in several
textbooks, e.g. [1-4], and in a number of investigations, e.g. [5-15]. The Duffing type
oscillators were treated in [1-12], oscillators with piecewise non-symmetric
characteristics were treated in [13], a Duffing oscillator with hardening static and
inertia nonlinirities was treated in [14], and a Mathiue-Duffing type oscillator was
treated in [15]. The approximate solutions to the sub-harmonic resonance were obtained
using various analytical and numerical techniques; i.e., the method of the multi-scales
(MMS) was used in [1], the harmonic balance method was used in [2-9], a harmonic
balance- "suitable parametric form" procedure was used in [10], a generalized
perturbation method was used in [14], and the method of normal forms was used in
[15].

The qualitative geometric theory techniques, frequently used in the analysis of
nonlinear dynamical systems, periodic, aperiodic and chaotic motions are described,
among others, in [19-23]). These techniques along with various approximate analytic
methods and aided with numerical simulations has been used in many investigations
concerned with analysis of stability and bifurcations of sub- and ultra-sub-harmonic
resonance responses and transition to chaotic motions in harmonically forced single
degree of freedom nonlinear systems, e.g.[25-31]. Szemplinska- Stupnika [27, 28]
used the harmonic balance, floquet theory and computer simulations to study stability
and bifurcations of sub-harmonic resonance and transition to chaos in symmetric and

asymmetric Duffing oscillators. The presented results in these studies revealed that
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chaotic motion occurs in transition zones between two periodic solutions having
different periods (having different topological properties), e.g. between a sub-or a ultra
sub-harmonic and a fundamental solution). That is, these studies have shown that the
chaotic motion in a symmetric or asymmetric ~ Duffing oscillators of the hardening
type, the chaotic motion is always associated with loss of stability of secondary (i.e.
sub- or ultra-sub-harmonic or super-harmonic ) resonance response. The above
approach was also used by Janicki and Szemplinska-Stupnicka [24-25] to study sub-
harmonic resonance and develop a criterion for the onset of chaos in single degree of
freedom oscillators with static nonlinearities under harmonic excitation. The harmonic
balance aided with analog and numerical simulations was used by Hayashi [29] to
analyze the stable and unstable manifolds, solution branching , homoclinic tangle of the
fundamentally nonlinear , hardening type, Duffing oscillator known as Duffing-Uda
oscillator. Hamdan and Nayfeh [30] , and Nayfeh et al [31] respectively used a first
order and a second order Multiple-Scales method (MMS) solutions to the 1/2
subharmonic resonance, a Floquet stability analysis of the obtained approximate
solutions, and numerical simulation to study the onset of period doubling bifurcations
and transition to chaos in a single machine quasi-infinite busbar system. The system
was modeled as a Mathieu's oscillator with quadratic and cubic nonlinearities and
external harmonic excitation. Their results showed that the loss of stability of the
obtained approximate solutions agrees fairly well (more accurately when using the
second order solution) with the onset of period-doubling bifurcations which is a
precursor to chaos and loss of synchronism.

Al-Qaisia and Hamdan [35, 36] studied the period doubling and transition to
chaos in the oscillator in equation (1) using the harmonic balance Floquet stability

analysis of asymmetric and symmetric approximate solutions for the fundamental
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resonance and numerical simulations. They proposed a criterion for the onset of period
doubling in this class of oscillators based on the intersection of the approximate
symmetric and asymmetric harmonic balance solutions.

In summary, approximate analytic solutions to sub- and ultra-sub-harmonic
resonances, their stability analysis and their association to period doubling, onset of
chaos, and loss of synchronism on single degree of freedom nonlinear oscillators under
harmonic excitation have been the subject of numerous investigations. These
investigations have for the most part considered the cases where the oscillator has a
hardening or softening nonlinearities. The class of oscillators in equation (1) which
includes both hardening and softening; i.e. elastic and inertial , nonlinearities appears to
have not been considered except in [35,36], where the analyses was concerned only

with the primary resonance response.
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THE METHOD OF MULTIPLE SCALES (MMS)

1 The Method of Multiple Scales (MMS)

The multiple scales method, (MMS), is one of the most commonly used
procedures for analyzing various resonances in  weakly nonlinear systems. The
underlying idea and procedural steps of this method are described in several textbooks,
i.e. Nayfeh and Mook[1] . This method uses a number of time scales and power series
expansion of the dependent variable and system parameters to convert the nonlinear
system equation of motion into a hierarchical set of linear partial differential equation.
This expansion is based on a small positive gage parameter £ usually intentionally
introduced by a scaling procedure depending on the type of sought periodic solution
(i.e. primary or secondary resonance response). The obtained hierarchical set of linear
partial differential equations are then solved consecutively to the desired order of
approximation. The main advantages of this method include its applicability for a wide
class of nonlinear systems, and it has systematic procedural steps. This procedure
however is restricted to weakly nonlinear systems, algebraically cumbersome when
solutions are carried to second and higher order approximations and it involves some
heuristic procedures at the second and higher order which can introduce extraneous
solutions ( periodic solutions which do not exist in the system being analyzed), e.g., see
[16,17].

This chapter includes the first order MMS approximate solutions for the 1/3 sub-
harmonic resonance response in the oscillator described by equation (1). It also includes

a local stability analysis of the obtained approximate solutions.
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2 First-Order MMS Approximation

In applying the MMS method to the analysis of a sub-harmonic response of a
nonlinear oscillator, such as the one under consideration given by equation (1), one
must keep in mind that the sub-harmonic resonance is, as indicated in section (1-1) is a
bifurcation phenomenon. That is, the 1/3 sub-harmonic resonance response of equation
(1) arises as a bifurcation from a generating fundamental response (a periodic response
having the same as that of the harmonic forcing). Furthermore the order (i.e. scaling)
scheme used when applying the MMS method will depend on the type of the periodic
response sought [1]. In order to obtain a fundamental harmonic generating solution for
the sub-harmonic resonance response, it is necessary to order the equation of motion so
that the forcing term appears at the lowest (e.g. zero) order, and the damping and
nonlinear terms appear at the next higher order in the hierarchical set of equations.

Accordingly, equation (1) is rewritten in the reordered form:
ii + g6t +u + g, (u’ii +ui” ) + gg,u’ = P cos(Qf) (2)
Where 0 < &£ <1. One then defines a fast time scale 7, =¢ , on which the main

oscillatory response occurs, and slow time scales7, = £"f ,n>1 , on which phase and

amplitude modulation takes place. In terms of these time scales, the time derivatives

become:
d 2
—=D,+eD, +&" D, +...
dt
e 3)
“3=D;+2D,D +¢’ (2D,D, + D} )+...
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0 . .
Where D, = 7 Also one assumes a power series expansion for the dependent

n

variable u in the form:

u(t,g)=u,, (T

02

T],T2)+gul(T

0

T],T2)+ gzuz(T

0

1,.T,) (&)

Since the 1/3 sub-harmonic resonance response is sought, a detuning parameter o ,

which expresses the nearness of Q to3®, may be introduced according to [31]:
2 1 2
=0’ = §Q +eo (5)

Substituting equations (3)-(5) into equation (2) one obtains:

(Df +2¢D,D, +2¢>D,D, + &> D} )(eul +&’u, + g3u3)

+s5(DU +eD, +&°D, )(su] +&’u, +s3u3)

1
+(§Q2 +go-)(guI +e’u, +g3u3)

s {(gul +e’u, +g3u3)2[(D02 +2¢D,D, +2¢’D,D, + &’ D; )(8U1 +&’u, +&u, )]}
1

2
+(.s:u1 +e’u, +s3u3)[(Do +eD, +&°D, )(gul +e’u, +s3u3)]

+eg, [eu] +&u, +£3u3]3 =Pcos(Qt) (6)

Equating coefficients of different powers of & in equation (6) to zero leads to following

set of linear partial differential equations:

0
g .

D’u, +%Qzuo =P cos(Q) (7)

Dlu, +é§22u1 =—cu,—¢& U, (Do u, )2 —eu. —8Du, —2D Du,~g u’Du, (8)
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1
Dlu, +§Qzu2 =—ocu, —Dju, —2D,Du, —2¢,u. —& u.D>u, —2& u.D,Du,

—g u,u,D>u, —2&,u, D,u,D,u, —2¢&,u, Du,D,u, —5Du, 9)

0 0770

2 2 2
—8] u] (Duun) _g2ulun _5Duu] _2D()D]ul _glunulD u

070

The solution of equation (7) can be expressed in either the form
u, =a(l,,T,)cos[t QT + A(T,,T,)|+2A cos(QT,)

(10)

Or the form
u, = A(T],Tz)emmm +2(T],T2)e—1/3(im;]) 1 Ae™™o 4 A Mo

(1)

Where A is the complex conjugate of 4= %ae ¥ and

9P
16Q%

(12)

Substituting equation (11) into equation (8) leads to

D’u, +%QzuI :{—% 'D]A—§i5QA—GA+(§QZgI —352)/122

+(§Q26‘1 —382]22A+(%Q281 —682)A2A:| o!/3001)

+{_ i§QA_GA+(§Q281 —& jA3 +(%Qzé’1 —6¢, jA2A+(281§22 -3¢, )A3:| o' o

+|:(281Q2 —382)A2A+(%8192 -3¢, jZAZ} et (13)

+ {(%5192 -3¢, jAZA} e L (26,07 —g, )N +cc
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Where cc stands for the complex conjugate of the preceding terms. Eliminating the
secular terms (terms that render the expansion non-uniform for large t) in equation (13),

one obtains:

—%iDlA —%iéQA—O'A +(§glﬂz -3¢, )A22+(§8192 -3¢, jzzl\

- (14)
+ (?g,Qz —6¢, jAZA =0
Noting that:

A=%ae"ﬁ, A=%ae"ﬂ, a=a.T,,), p=pT,T,,.),

DA=A4"= %e’ﬂ + i%ﬂ'e’ﬂ , e =cos(3B) +sin(3), and after factoring out e”,

equation (14) becomes

1., 1 , aoc 1. 2, a 20 al’
——ia'+—af' ————id Qa+(=Q -3&,)—+(—¢,Q" —6¢
3 3 ﬁ 2 6 (9 1 2) 8 (9 1 2) 2
2
+(§glgz—3gz)’\z (cos(38) —isin(33)) =0 (15)

Where a prime denotes derivative with respect to the slow time 7, . Separating the real
and imaginary parts of the complex differential equation (15) and equating each to zero,
leads to the amplitude and phase modulation first order real differential equations in the
time7; :

a’ =%Aa2(362 —éngz)sin(?,,B)—%an (16)

, 3 3 2 3 2
ap =56a+§(332 _58192)6’3 +Z(382 _E“"lQZ)Aa2 cos(35)

+(9¢, —%glgzwa. (17)

Ol LAC U Zyl_ﬂbl
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The steady state motions are obtained from equations (16) and (17) by setting
a' = B' = 0; this leads to the trivial steady state solution a = 0 and the nontrivial steady

state solutions defined by the algebraic equations:

&:%Aa%% —%glﬂz)sin(?,ﬁ) (18)

%a +§(382 —%glﬂz)a2 +(9¢, —?glﬂz)A2 =%(3<<;2 —%glﬂz)AacosG,B) . (19

Squaring and adding equation (18) and equation (19) leads to the frequency-response

equation:
a'+Ra’ +R, =0
(20)
Which has the roots:
-R R
a’ = L2 _Ro12
125 [( 2) 2
21
Where
2 _ 2
R = moml2 m, , R, = m, "‘2m3 ’
m, m
3, -2¢,+2 :
m, = &2 725 T 28,0 ,m, =£+A—(6$2 —20¢,&, +20gg,0),
8 2 2
(22)
A 5
m, = (Z)z(3g2 —6g, +6cg))° ,m = %

and o,Aare as defined in equations (5) and (12). Equation (21), for given system

parameters 0,¢,&,,&,,P and frequency Q yields two real values (non-trivial
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solutions) for the amplitude a of the 1/3 sub-harmonic resonance response of equation

R} R’ R
(2) provided that R, <0, T‘—R2 >0 and[Tl—R2]/ <—71.

2
And a single solution (real value for a) exists provided that TI - R, >0and

R’

s

R . ) .
S —7‘ , while no solutions (no real values of @ ) exist when none of these

conditions is satisfied.

For convenience, the steady state 1/3 sub-harmonic resonance curves of the
oscillator in equation (3) obtained using the above results over a range of system
parameters are presented and discussed in chapter (6). All of the needed calculations in
the above equations were carried out using a specially formulated MATLAB program.

The stability analysis of these solutions is presented in the next section.
3 Stability analysis

It is necessary to carry out a stability analysis of approximate steady state
analytic solutions of a nonlinear system since not all of these solutions may be
physically releasable (e.g. are stable). Also a key aim of the present work is to examine
the relation, if any, between loss of stability of the obtained 1/3 sub-harmonic resonance
solutions and the onset of chaotic motions. The local stability of steady state solutions
(e.g. singular points of equations (16) and (17), describing the 1/3 sub-harmonic
resonance response of the oscillator in equation (2) can be determined by imposing

perturbations on these solutions; that is, one lets:

a=a,+a,, P=p,+p, (24)
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Where the subscriptO denotes a steady state value and a subscript 1 denotes a
perturbation (e.g. small) value. Substituting equation (24) into equations (16) and (17),
after factoring out a from equation (17), using equations (18) and (20) (with areplaced

by a,,and f replaced by f,), and keeping only linear terms, leads to

a]’ =[3a,a, sin S, _579](11 + (3ala§ cos3p,) b, (25)
By =Qayay)a, —(Ba,a,sin3f,) B (26)
Where

3A 2 3 2
o, 27(352 _55192) s Uy :§(352 —55192),

a, =9, —%8192)/\2 27)

With, from equations (18) and (19),

sin3f, = 22 (28)
2a,a,
2
cos3f, = - .50 +a, +a,a, (29)

a,a,
And o, A are as defined in equations (5) and (12). Equations (25) and (26) is a set of
two coupled, homogeneous, ordinary linear first order differential equations, in the slow
time 7, , with constant coefficients. The solution to these equations takes the exponential
form:
ay =aye™ B, = pe™ (30)
Where a,,,f,, and A are constants. Substituting the expressions in equation (30) and

their first derivative into equations (25) and (26), factoring out e*” leads to the

algebraic homogenous (e.g. eigen value) problem:
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A-1 B ||ay 0
= (€29
C D—-21\B, 0
Where A4, B,C,D are constant coefficients defined as follows:

A=3a,a,sin —? ,  B=3a,a; cos3p,,

(32)

C =2a,a, , D=-3a,a,sin3p,.

For a nontrivial solution the determinant of the coefficient matrix in the above
equation must vanish. This leads to a quadric algebraic equation for the eigen value 4 .

The two roots of this equation are given by:
_ 1 2 1/2
s —5(A+D4_r[(A+D) —4(4D-BC)'"?). (33)
Then for stability of the singular points of equations (16) and (17) (i.e. steady

state solutions a,, /3, ) requires the real part of the roots 4, in equation (33), when

these roots are complex, to be negative, and these roots to be negative when they are
real. That is for stability of the steady state solutions the following conditions must be
satisfied:

A+D<0, AD-BC>0, (34)
Where at the stability limits the above conditions become:
A+D=0, AD-BC=0 . (35)

Substituting the expressions given in equations (32) into the first of equations (35) leads

to the following stability limit condition:
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g < %gzsf (36)

That is, the obtained 1/3 sub-harmonic resonance solution obtained in section (2), (e.g.

given by equation (22), is stable provided that equation (36) is satisfied.

Similarly, upon substituting the expressions defined in equations (32) into the second
stability limit condition given in equation (35) , leads to the following 4- the order

algebraic equation in the amplitude a, of the 1/3 sub-harmonic steady state resonance

response:

) 1o.9)
)4, (2

a, a,

o, +1.50

ay +( )’ =0 (37)

The roots of the above equation are given by:

a? =%[—bi(b2 +40)"] (38)
Where
1.5 &Y
b= 0[3—'0-’ c = [ J 39)
a, 2a,

The real roots of the above equation define , for given system parameters of the
oscillators in equation (2), the amplitude- frequency curve(s) which separate(s) the
stable and unstable regions in the corresponding steady state 1/3 sub-harmonic
resonance response of this oscillator. All of the calculations needed to plot these
curved were carried out using a specially written MATLAB program. For convenience,

examples of these results are presented and discussed in Chapter (6).
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THE METHOD OF HARMONIC BALANCE (HB)

1 Introduction

The analysis of dynamic response of a nonlinear system usually involves
comparisons of the results obtained using a selected approximate analytic method with
those obtained numerically as well as with those obtained using other known
approximate analytic methods. Such comparisons are usually necessary in order to
establish confidence in the obtained results. In the previous Chapter (2), approximate
analytical solutions for the 1/3 the sub-harmonic resonance response of the oscillator in
equation (1) were obtained using the well known multiple scales (MMS). In this chapter
analytical approximate solutions to this problem are obtained, for comparison purposes,
using the harmonic balance (HB) [2,3] which is another commonly used analytic
method. The underlying idea of the HB method is that one substitutes an assumed
truncated Fourier series approximation for the dependent variable in the equation of
motion. Then one equates the coefficients of each of the different n lowest harmonics in
the resulting equation to zero, where »n is equal to the number terms in the assumed
series approximation. This leads to a system of n coupled nonlinear algebraic equations
in the coefficients of the assumed series which must be solved simultaneously. The HB
method is usually called m modes harmonic balance, i.e. (mHB), where m is equal to
the number of harmonics with different frequency in the assumed series solution.
The harmonic balance (HB) method has several advantages in comparison with other
well known approximate analytic methods. In addition of being probably the simplest

technique, the advantages of the HB method over other methods include [17, 18]:
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1- The harmonic balance (HB) method is not restricted to weakly
nonlinear systems. For a smooth system the HB solution always
converges to the exact solution provided that enough harmonics are
included in the assumed truncated Fourier series approximation.

2- The HB method accommodates qualitative as well as quantitative
changes in the approximate solution as more harmonics are included
in the assumed Fourier series approximation. In other words, higher
degree of accuracy can be obtained if modern appropriate numerical
and symbolic computational resources such as MATLAB symbolic

tool boxes are used.

In the present work, the two-mode harmonic balance (2HB) method will
be used to obtain an approximate solution for the 1/3 sub-harmonic resonance
response of the oscillator in equation (1). This chapter also includes stability

analysis of the obtained 2HB solution.

2 Two Modes Harmonic Balance 2MHB)

In applying the harmonic balance to obtain a steady state response of a
harmonically driven single degree of freedom nonlinear system such as the oscillator in
equation (2) a phase shift is usually introduced in the harmonic forcing. This is done so
that the part of the assumed solution at the forcing frequency involves only a single
fundamental sine or cosine term. This procedural step reduces the number of nonlinear
algebraic equations in the coefficients of the assumed series solution which one has to

solve to a number which is one less that would be obtained otherwise. It is also noted
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that in applying the HB method, unlike the case when MMS is used, it is not necessary
to reorder terms, or introduce appropriate detuning, in the nonlinear equation of motion.
Accordingly, introducing a phase ¢ in the harmonic excitation of equation (1), this
equation becomes:

G+ 0 +u+g (uii+ui’ )+ g,u’ = Pcos(Q + @) (40)
A two modes harmonic approximation to the steady state 1/3 sub-harmonic resonance

response of the above oscillator takes the form:

u(t) =4, COS(Q‘) + 4, cos[%J + B, sin(%} 41)

Where, as was indicated in chapter (1), since the sub-harmonic resonance is a
bifurcation phenomenon, then, like the MMS solution, a generating fundamental
term, 4, cos(€2f) must be included in the assumed HB solution. Substituting equation

(41) and its first and second derivatives, which are:

ilt)=Q [— A, sin (Qr) - % sin (%} + % cos (%ﬂ , (42)

ii(t)=-Q’ {AI cos (Qr) - A(')” cos (%) + %sin [%ﬂ , (43)

Into equation (40), using appropriate trigonometric identities to simplify nonlinear
terms, collecting coefficients of similar harmonics, ignoring harmonic terms greater
than the fundamental, and setting the coefficients of different remaining harmonics to

zero, leads to the following set of coupled non-linear algebraic equations:
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cos(Q)
|:1—Qz —8192(%1412 +gA12/3 +§Blz/3)+82(%1412 +%A12/3 +%Blz/3j:| 4, +
o 1 2 15 1 5 3 2
&< EA1/3BU3_§A1/3 +& ZA1/3_ZA1/3BI/3 = Pcos¢ (44)
sin(Q¢):
oo, +e.Q LB, —L 428 3 42.B,, -+ B3, | = Psi 45
- 1+ & 18 013 T AP +é&, 7 P T Bus = sin g (45)
Qt
COS(—):
( 3 )

1 5 3 1 3 1
{1—592 —55192 +82(§A]2 +ZB]2/3HA,,3 + (182 —gg,QZJA]A,ZB

3 1 1 1 1 1
+(Z£2 _ﬁglgzj/ﬁm = _55931/3 _gglAlBlz/a +52(ZA1231/3 +§A1312/3J (46)
. Qr
sin(—) .
( 3 )
1 1 1 5 3 2 3
{1_592 +5192(§A1A1/3 _§A12/3 _§A12)+52(§A12 _§A1A1/3 +ZA12/3J}BU3

3 1 1
+ (Zgz _E‘C"IQzJBfB :gml/a-

(47)

The above four nonlinear coupled algebraic equations has four unknown constants

A,4,,,B,; andg. These equations can be reduced to three in the
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constants 4,, 4,5, B,,;, by adding the square of equations (44) and (45) to eliminate the
phase ¢ . This leads to the following equation, written in a form appropriate for a

particular numerical procedure illustrated shortly:
A’ +b A +b, =0 (48)
Where

2(bsb, +bsby) bf +b62 s
b, = 2 2 , b= 2 2
b; + b; b; +b;

b, ={1—92 —5192(%145 +§Af/3 +§B12/3)+52(%Af +%A12/3 +%B12/3ﬂ,

1 1 1 3
b, = 5192(_141/3312/3 __A13/3)+ & [ZA13/3 __A1/3Blz/3J

6 18 4
b, =-Q, b, =&,Q’ LB3 —lA2 B, |+¢ (EAZ B —133 (49)
5 > 6 1 18 1/3 6 1/3-1/3 2 4 1/3-1/3 4 1/3

Equations (46)-(48) are three nonlinear coupled algebraic equations which, for
given system parameters, can only be solved numerically for the three unknown

harmonic coefficients 4,,4,,; and B,; in these equations. A numerical solution to

these equations can be carried out using any of the several well known methods of
nonlinear coupled algebraic equations solving techniques such as Newton- Raphson
method available in the MATLAB nonlinear algebraic equations toolbox. In the present
work these equations were solved by a direct iterative technique which uses an
appropriate implicit form of these equations. It is noted that in the 1/3 sub-harmonic

resonance region, based on results of other investigators for other oscillators [2, 3, 27],

-9P . . . .
B, <1l , A ~——= and4,,B,; << 4,,;; in fact some investigators obtained sub-
3 g 3 3

QZ
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. . . . . -9P .
harmonic approximate solutions for Duffing type oscillators assuming 4, = — , i.e.

8Q°
[2,3]. Taking these facts into consideration, equations (47) and (48) are  solved

implicitly for, respectively, B, ; and 4, :

C
B, = 0 50
" cl+czBlz/3 0
4 =-D2 (51)
A, +b,

Where b,,b,are as defined in equations (49). Also, noting that the 1/3 sub-harmonic

resonance, in addition to the trivial solution, has two branches, and then equation (46)

was rewritten in the implicit quadratic form:
A12/3 +d 4,5 +d, =0,
The two roots of which are given by
1 1/2
A, = 5[— d, +(d; - 4d,) ] (52)

Where

d

A

d]:ﬂ , dy=~—" "2 g = 1—192—25192+52(§A12+1312/3j )
d, d, 9 9 2

d, = [282 —%S,QZJA] , ds= (282 —LS]QZJ,

4 4 18
d ——l(SQB —lgABZ +e lAZB +1ABZ (54)
6 3 1/3 6 1<H1+1/3 2 4 1 1/3 2 1-1/3 |-

Equations (50)-(52) where solved with a direct iteration method, for given

system parameters, using a specially written MATLAB program. The iteration started

Ol LAC U Zyl_ilsl
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with an initial guess for the variables 4,, 4,,; and B, ;. The iteration process was
stopped when, for each of the variables, the difference between the newly calculated
value and one in the previous step is less than107~ . The total amplitude a,,of the 1/3-

subramonic steady state response is then calculated using the relation;
= |42, + B, 55
ays =415 + Dy (55)

For convenience, the results obtained using the above HB solutions are presented and
compared in chapter (6) with those obtained using the MMS and direct integration of

equation (1).

3 Stability of harmonic balance solution

A local stability analysis of the harmonic balance approximate solution,
presented in the previous section, for the 1/3 sub-harmonic resonance response of the

oscillator in equation (1) can be performed by superposing a perturbation v(#) on the

steady state solution given by equation ( 41). That is, one lets:

u(t) =u,(t)+v(t) (56)
where u,(f)is given by equation (41) with coefficients as defined by equations (52)-
(54), and v(f)is a small variation in u,(¢). Substituting equation (56) and its time

derivatives into equation (2), using equation (41) and keeping only linear terms in v,

one obtains the linearized variational Hill's type equation :
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A?. B’
1+8—21(A|2 + A, + B )+ g,(AlAm + '2/3 _ '2/3 ]cos( e A, cos(ﬂ)
‘)'
A2
+6,(4,,8,, -4 Bm)sm(z? )+e,4,B,, sm(%) 54 J-cos(20x)
2 200 1 201
5+§ngBm(Al,3 — 4, )cos(T)+§g]Q(B]2/3 —A2, -4 Am)sm(—)
|4 40 ’
+§81QA [Bm os( ) 4,58 1n( ) 4, sm(ZQt)J
I 2 Al Al3/3 B12/3 3 2 2 2 |
1—819 7"'?"'? +582(A +A1/3 +Bl/3)+
AL, Bl £Q° 14 20
|:352£A1A1/3 + 12/ + 12/ ]_ 16 (AIB Blz/s ?A 1/3J:| (7)
+ 2 (57)
+|:382B1/3(A1/3 _Al)_g]QgBlB(?’Alm -74 )}Sm(z?l‘) v =0

+ (3821‘11141/3 - gleZAIAH3 j cos(%) + 4,8, (382 - %&Qz J sin(%)

+ %Af («92 -£,Q? )cos(2Qt)

The above linear variational equation contains several parametric excitation
terms which indicates that there are different possible scenarios by which the 1/3 sub-
harmonic resonance can lose it stability. The uncovering of these different scenarios is
rather involved and is beyond the scope of the present work. The focus of this work will
be on the divergional (e.g. overflow) instability of the 1/3 the sub-harmonic resonance.
For this purpose, using Floquet theory, the boundary between stable and unstable
regions of the 1/3the sub-harmonic resonance solution is determined by assuming a

particular solution to the variational equation (57) in the form [17, 27];
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v(t) =C, cos(%) +C, sin(%)

(58)

Where C,,C, are unknown constants. Then, upon substituting equation (57) into
. . . Q1 . Qf . .
equation (57), and equating the coefficients of cos(?) and sm(?) in the resulting

equation to zero, one obtains the set of coupled linear algebraic homogeneous equations

in C,andC :
|:ﬂll ﬁl2 }{Cl}:{o} (59)
ﬂZl ﬂ22 C2 0
Where
g, Q° Q Q’
= + - — —_—— —_—
B =g > 18 &> 6 8s 9 &
Qs Q Q’ 1 Q Q’ 1 Q6
P = TS T gt 58 Py =& T gty T
Q’ Q’ 1 Q
B “g ST & + 8 & +€g5=
& 2 2 I I,
& :1+?(A1 +A1/3 +Bl/3 ’ &> =81(A1A1/3 +§A1/3 _531/3 ’
2
g3 =¢&B,;(4,,;—-4) , &, 2531931/3(141/3 —-4),
1

8s =§ng(Blz/3 _A12/3 —2A]2),

1 1 1 3
8 :1_58192 (47 +§A12/3 +§Blz/3)+582(A12 + 475 +B3)
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3 1 21
g, =—&,(24,4,; +A12/3 +Blz/3)__5192(A12/3 _312/3 +-44,),
2 6 27
1 ) 21
gy =3&,B,,5(4,3 _Al)_gglg B, 5(4,; _?AJ- (60)

Nontrivial solutions for C, and C,requires that the characteristic determinant, denoted

by A, in equation (59) be zero; that is, the boundary between stable and unstable regions
is given by:

A= fyfr = Bufn =0 (61)
Also, in the stable regionA >0, while in the unstable regionA <0, [17, 27]. For
convenience, examples of the results obtained using the above stability analysis of the
1/3 sub-harmonic resonance response of the oscillator in equation (41) are presented
and discussed in the next chapter. All of the required computations in this analysis

procedure where carried out using a specially constructed MATLAB program.
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CHAOS DIAGNOSTIC TOOLS

There are a number of well developed diagnostic tools used for characterizing,
visualizing and quantifying periodic, quasi-periodic, and chaotic oscillations in physical
systems. Examples of the commonly used of these tools are: Lyapunov exponents,
Poincare maps, topological dimensions, phase plane plots, and frequency spectra.
Following is a brief description of these tools; more detailed and in-depth descriptions

are found, among others, in [19-23].

1 Lyapunov exponents

Lyapunov exponents i_]. are a quantitative criterion for testing chaos. They

represent a measure of the average rates of convergence or divergence of nearby orbits
in phase space and thus represent a measure of the motion sensitivity to changes initial
conditions. For a system represented by 7 - state equation which include the time t as a

state variable, there are exactly n Lyapunov exponents A4, j=12...n, i.e. for the

single degree of freedom forced oscillator under consideration given in equation (1) ,
there are three state equations which include the time as a state variable, and thus there
are three Lyapunov exponents. The set of Lyapunov exponents for a given system is

defined as follows [23]:
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where 7,(f) measures the growth , under the dynamics of the system, of a small n-

sphere of initial conditions in the system n-dimensional phase space at /=0 in terms
of the j-th ellipsoidal axis. A positive Lyapunov exponent implies chaotic motion. Thus,
in practice, one computes the largest Lyapunov exponent of the steady state motion (e.g.,
after allowing sufficient time for the transient response to die out) to determine whether is
this motion is or is not chaotic. An excellent and commonly used numerical procedure for

calculating the full spectrum of Lyapunov exponents 4, j=12...n from a generated

time series (i.e. time history of motion generated by numerically integrating the system
equation of motion) has been developed by Wolf et al [23]. In the present work, the
Software which uses this numerical procedure will be used to calculate the Lyapunov

exponents for steady state response of the oscillator in equation (1).

It noted that the full spectrum of Lyapunov exponents 4,, j =1,2...n, order as a

sequence 4, > A, >...2 4, allows one, using the theorem listed bellow and other relevant

ones (see, e.g., [37] ), to get more information about the type of the motion attractor

involved.

Theorem 1.

A, =0 for at least one j , for any limit set that is not an equilibrium point.

Theorem 2.

Z A, <0 for any dissipative system.

=
Theorem 3.

ij <0 forj=1,.,n, = the attractor is a stable equilibrium
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4 =0and 4,, j=2,n = the attractor is a stable limit cycle
A4 =24,=0and 4,, j =3,n = the attractor is a stable two-torus
A=..=4=0and 4,, j=k+1,n = the attractor is a stable K-torus

A, >0 = the attractor is a chaotic.

Based on the above, for the three-dimensional non-conservative oscillator considered

3
in the present work, the motion is chaotic if 4, >0, 4, =0 and 4, <0, withz 4, <0 .
1

It is noted that the above theorems are also used to exclude the possibility of chaos in
one and two-dimensional systems, e.g., the dimension of a dynamic system must at least
be three to have a chaotic motion. Also it is noted that there is a number of measures of
the topological dimensions of a motion attractor [19-22], e.g., Lyapunov dimension,
correlation dimension, information dimension, capacity and Haudoff dimension. In
many cases these different measures yield approximately the same value for the
topological dimension of the considered attractor. With the availability of Lyapunov

exponents, one can easily calculate the Lyapunov dimension d, , which is given by

[23];

where the integer K is defined by the conditions:
K+1

f;tj >0,and ) 1, <0.

J=1 J=1
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2 Phase Planes Orbits

The Phase plane plot is a simple graphical method for distinguishing periodic
motions from non-periodic ones. Motions for second-order systems. A phase plane
analysis can be used to study motion trajectories for various initial conditions, for
stability decision and for limit cycles detection. To generate the phase plane plots, first
the system equations of motion are written as a set of n-autonomous first order
differential equations, where » is number of system state variables that span the phase
space which, for the non-autonomous system include the time as a state variable. In the
phase space plot, time is implicit, and trajectories represent solutions to the system state
equations. The phase plane is obtained by plotting two of the system state space
variables (i.e. displacement and velocity (or momentum) ) versus each other, that is, the
phase plane is a two dimensional projection of the phase space , spanning two arbitrary
state variables. For the present non-autonomous oscillator in equation (1) the phase
plane plots are plots of u vs. u. Key features of the phase plane plots for non-
autonomous single degree of freedom oscillators, such as the present one in equation

(1), are the following:

1- A periodic motion traces a closed orbit
2- A k- period sub-harmonic motion traces a closed orbit that crosses itself &
times

3- Quasi-periodic and chaotic motions both fill —up the area of the phase plane.
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It is noted that the phase plane method is limited in its usage for systems up to second
order inclusive because application of this method to higher-order systems is

graphically complex.

3 Poincare' maps

A Poincare' map is a useful tool in the analysis of the motion of a nonlinear
dynamic response. It allows one to distinguish between different types of periodic
motion, between periodic and nonperiodic motions, and between chaotic and nonchaotic
motions. To construct a Poincare' map, one constructs a hyper surface (called Poincare'
section) in the state space that is transverse to the flow (trajectory) of the given system
state equations. For an »n-D autonomous system, the hyper-surface dimension is less
than n. for an n-D non-autonomous system ( which includes time as a state variable), the
dimension of a Poincare' section is n-/, also each point in this hyper surface is specified
by n-1 coordinates corresponding to the n-/ system state variables used to construct
the system phase space. A Poincare' map is then constructed by sampling at an
appropriate rate the successive intersections of a system trajectory in the phase space
with the constructed, one sided, Poincare' section. Thus, a Poincare' map is a
transformation (map) that maps the current intersection to the subsequent one on a

Poincare' section.

For the 3-D non-autonomous oscillator under consideration in the present work,

given by equation (1), a Poincare' map in constructed by plotting in the (u,#) the

sequence of sampled points (u(¢,),u(t,)), t, =t, + KI', K=1,2,..., where the sampling
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time 7 =2§ is the period of the harmonic forcing with frequency Q, and 7, is an

arbitrary starting time of the sampling process; e.g for analysis of the steady state

response f,1s chosen large enough to given sufficient time for the system transient

response to die out. By examining the 2-D plot of a Poincare' map of a harmonically

forced oscillator, such as the one under consideration in the present work, the following

remarks can be made about the type of motion involved;

Poincare' Map

1-Single point

2-Finite K-points

3- Infinitely K-points filling up
a closed curve

4- A cloud of unorganized

points

4 Frequency spectrum

Motion Type

Harmonic motion at fundamental period 7.
Sub-harmonic motion of period K7.
Quasi-periodic motion ;e.g two
incommensurate frequencies present.
Strange attractor: possibly chaotic, or
quasi-periodic motion with three or more

dominant incommensurate frequencies.

Most numerical software packages, such as MATLAB, and experimental signal

analysers include tools for computing the Fourier spectrum of a signal. The spectrum

associated with an arbitrary state variable (e.g. displacement u of the oscillator in

equation (1)) is a useful tool for distinguishing between periodic and non-periodic

motion, and between chaotic and non-periodic motions of a harmonically driven

nonlinear oscillator.
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A periodic motion with fundamental frequency € displays a discrete
frequency spectrum with spikes at nQQ, n =integer. A quasi-periodic motion also
shows up as a discrete frequency spectrum displaying spikes at the incommensurate

frequencies of the harmonics involved in the motion. A sub-harmonic period-37
. 2 . . . . nQ
motion,7" = o shows up as a discrete spectrum displaying spikes at 3 n=12,..

A Chaotic motion displays a continuous broad-band frequency spectrum with spikes at
the dominating frequencies.

In the present work, the FFT of the steady state displacement u(¢) of the nonlinear
oscillator in equation (1) was obtained using a specially constructed MATLAB
program. The program uses the last 1024 discrete points of displacement u(¢) obtained
by numerically integration equation (1), over about 1000 cycles of motion, using a 4
order Runge-Kutta method. In all of the cases considered, the last 1024 data point used
in the FFT analysis included , in the frequency range considered, about 10-25 cycles of

the oscillator motion u(?).

www.manaraa.com



40

RESULTS AND DISCUSSION OF RESULTS

The characteristics and stability of the 1/3 sub-harmonic resonance response
curves of the harmonically forced nonlinear oscillator given in equation (1) where
studied analytically and numerically over a selected range of the oscillator parameters:
£,,&,,0,Pand Q. The analytical study was based on the approximate first order MMS
solutions given in equations (21) and (34), and the approximate two-mode harmonic
balance (2MHB) solutions given in equations (50)-(52), and (61). The numerical
solutions were obtained by integrating equation (1) using a 4-th order Runge-Kutta
method. By examining the waveform of the displacement u( t) for many trial runs, it
was found that for the purpose of this work, an integration time /=1000 sec. with a step
At =0.1 sec. yields sufficiently accurate results and provides about 300 sec  decay
time for the transient part of the response . This transient time was found to be
sufficient in all of the cases considered. Thus, the last 700sec of the obtained time series

of the displacement u(f) is considered to be the steady state response. The FFT
analysis was carried out on the last 1024 of these points of the time series u(#) which

corresponds to a time duration of 102.4sec from r=8977 sec to = 1000 sec of the
steady state response. Thus, for the considered frequency range 1.5<Q<6, the

obtained FFT spectrum represents the frequency content of the steady state response
for about 25-100 excitation cycles with period 7T = %r which corresponds to 7-33

cycles of a steady state 37 sub-harmonic response . The FFT spectrum of the steady

state time series u(f) provided the numerical solution for the amplitudes of the

fundamental and that of the 1/3 sub-harmonic components of the steady state response.
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The phase plane plot, Ponicare' map and Lyapunov exponents were obtained for the
steady state response from =500sec to =1000sec.

It is to be noted that, for given system parameters, there is a threshold value of forcing
amplitude P, (which strongly depends on damping ratiod ), below which a 1/3 sub-
harmonic resonance of the oscillator in equation (1) is not possible. In order to
numerically generate a sub-harmonic solution, when it exists, the initial conditions in
the numerical integration procedure have to be within the domain of attraction of the
sub-harmonic steady state solution. In the present work, the MMS and 2MHB
approximate solutions were used to provide initial conditions for the numerical
integration. This, to some extent, reduced the elaborate search in the state space for the
domain of attraction for stable and unstable sub-harmonic solutions. The stability of the
approximate analytic solutions was determined by comparing them with the numerically
obtained results; that is, a numerical solution starting at the predicted theoretical values
was considered unstable if it diverges away from these values and settles into a different

solution.

Examples of results simulation for typical steady state responses obtained
using the approximate analytical solutions and numerical procedures indicated above
are depicted in figures (1)-(21). In all of the cases presented in these figures the value

of £ in equation (1) was taken as unity, e.g. ¢ =1.

Figures (1)-(5) show examples of the effects of forcing amplitude P, damping ratio &

and initial conditions on the onset of the 1/3 sub-harmonic resonance.
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Fig. (1) : Numerical solution : (a): Time series solution (b) : Fourier transform
(¢): Phase plane plot (d): Poincare' map.
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(¢) : Phase plane plot (d): Poincare' map.
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Tize series Solulion : Fousier Trans fage (FT)
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Fig.(5): Numerical solution : (a):Time series solution (b) : Fourier transform
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Figures (6)-(9) present typical results of comparisons between MMS and
2MHB approximate solutions , and between these solutions and results of numerical

integration for cases where the hardening nonlinearity dominates ( e.g &, << ¢&2),
hardening and softening nonlinearities have nearly equal strength (e.g &, ~ £2) , and

softening nonlinearity dominates (&, >> £2).

35

25

Amplitude
L]
T
-~

Fig.(6) : MMS, 2MHB and Numerical solution : (=) : 2MHB solution, (.) : MMS solution,
(*) : Numerical solution, (—.) : Fundamental amplitude (A, )(2MHB).
e=1¢6=0.02¢ =02,6=0.01, P=5.
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Arplitude

Fig.(7): MMS, 2MHB and Numerical solution : (-): 2MHB solution, (.) : MMS solution,
(*) : Numerical solution, (—.) : Fundamental amplitude (A, )(2MHB).
e=16=02,¢,=0.02,6=0.01, P=1.

25

20

Armplitude

Fig.(8): MMS, 2MHB and Numerical solution: (=) : 2MHB solution, (.) : MMS solution,
(*) : Numerical solution, (-.) : Fundamental amplitude (A4, )(2MHB).
e=L¢g =01¢g,=0.1,0=0.01LP=1.
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Arplitude
=
T

Fig.(9) : MMS, 2MHB and Numerical solution : (-): 2MHB solution, (.) : MMS solution,
(*) : Numerical solution, (-.) : Fundamental amplitude (A4, )(2MHB).
e=L¢g =01L¢g,=0.0506=001P=1.

www.manaraa.com




48

Figures (10)-(15) display examples of the stability analysis results of the

approximate MMS and HB solutions.
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m
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08 / m

15 2 25 3 a8 4 45 i

Fig.(10) : Approximate (MMS) results : (=) : MMS solution, (-.) : Stability curve.
e=1,6=002¢ =02,6=0.01, P=5.
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Fig.(11) : Approximate (MMS) results : (=) : MMS solution, (—.) : Stability curve.
e=L¢g=02,¢,=0.02,06=001LP=1.
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Fig.(12) : Approximate MMS solution : (=) : MMS solution, (—.) : Stability curve.
e=16=01¢=0.1,06=0.01,P=1.
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Fig.(13) : Approximate 2MHB solution : () : 2MHB solution,
(=.) : Fundamental amplitude (A, )(2MHB solution).
e=16=02,¢=0.02,6=0.01, P=5.
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Fig.(14) : Approximate 2MHB solution : (-) : 2MHB solution,
(=.) : Fundamental amplitude (A,)(2MHB solution).
e=1L¢g=002,¢,=02,0=001LP=1.
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Fig.(15) : Approximate 2MHB solution : () : 2MHB solution,
(=.) : Fundamental amplitude (A, )(2MHB solution).
e=1¢6=01¢=0106=0.01,P=1.
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Figures (16)-(21) show examples of the numerical simulation results obtained using the
chaos analysis tools : phase plane plot, FFT spectrum, Poincare' map and Lyapunov

exponents.
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Fig.(16): Lyapunov exponents.s =1,&, =0.02,5,=0.2,0 =0.01, P =5,Q =3.5,
u(0)=1.75,u(0) = 0.
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Fig. (17) : Numerical solution : (a) : Time series solution (b) : Fourier transform

(¢): Phase plane plot.
e=1¢g =001,¢& =0.1,06 =0.01, P =14, Q =3.14, u(0) =5, u(0) = 1.
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Fig.(17—=d) : Lyapunov exponents. e =1,&, =0.01, &, =0.1,6 =0.01, P =14, Q =3.14,

u(0) =5, 1(0) =1.
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Fig. (18) : Numerical solution : (a) : Time series solution (b) : Fourier transform
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Fig. (19) : Numerical solution : (a) : Time series solution (b) : Fourier transform
(¢) : Phase plane plot (d): Poincare' map.
e=16=01¢ =0.0506=0.0,P=9,Q=1.2,u(0) =4, u(0) =1
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Fig.(20) : Numerical solution

:(a) : Time series solution (b) : Fourier transform

(¢): Phase plane plot .
e=16=001,¢6,=0.1,0=0.0L, P=14,Q=2.84,u(0)=5,u(0) =5
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Fig.(20—d) : Lyapunov exponents. e =1,&, =0.01, ¢, =0.1,6 =0.01, P =14, Q = 2.84,

u(0) =5, 1(0) = 5.
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Fig. (21) : Numerical solution : (a): Time series solution (b) : Fourier transform

(¢): Phase plane plot (d): Poincare' map.

=16 =00Lg, =0.1,6 =001 P =14, Q =2.843,u(0) = 6, 1:(0) = 5

Based on the results presented in these figures, the following remarks can be made

about the 1/3 sub-harmonic resonance, and chaotic response of the present oscillator

given in equation (1):

1. The sub-harmonic resonance is a bifurcation phenomenon: it is initiated as

system parameters go through critical values. In the present oscillator, for given

parameters &,,&,, there is a threshold value of forcing P below which, and a

threshold value of damping & above which, the 1/3 sub-harmonic resonance

does not take place.

2. For given system parameters for which the sub-harmonic resonance exits, the

initial conditions play a critical role in its onset; that is, in order for the steady
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state to settle into the 1/3 sub-harmonic attractor, the initial conditions have to
be within the domain of attraction of this attractor.

Approximate first order MMS and approximate two modes 2MHB solutions
yield, for the range of system parameters considered in this work (e.g. for the
cases where the oscillator in equation (1) is weakly nonlinear) nearly identical
prediction of the 1/3 sub-harmonic resonance response of this oscillator. Their
prediction accuracy, in comparison with that of numerical integration results, is
qualitatively fair and quantitatively reasonably good for the cases where the
oscillator is weakly nonlinear. For the cases where the oscillator is moderately
or strongly nonlinear the accuracy of both of these approximate solutions is poor
both qualitatively and quantitatively.

For the cases where the nonlinearities in the oscillator behaviour in equation (1)

predominantly of the hardening type (e.g. &, <<g&, ) the 1/3 sub-harmonic

resonance, if exits (e.g. if P> P

 iical » © <O ) » 1S Initiated at an excitation
frequency Q_ >3® , where @ is the natural frequency of the corresponding

linear oscillator ( for the present oscillator @ =1 ). This initiation value of Q
appears to move to right of the point 3@ as P and /or & is increased, and the
resonance curve show the typical hardening, e.g. bending to right, behaviour.

As g, is increased form a value relatively low in comparison with that of ¢, , the
value Q_at which 1/3 sub-harmonic resonance is initiated appears to move
from a point to the right and towards Q =3w. Increasing & further, while
keeping &, constant, the initiation point €2 continues to move towards the

point Q=3®m as P is increased and /or O is decreased. As the softening and

hardening nonlinearities in the oscillator behaviour in equation (1) become of
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nearly equal strength (e.g. &, ~¢&,) the 1/3 sub-harmonic resonance, if exits

(e.g. if P>P

 iical » © <Oiew )» 1S initiated at a point Q. < 3w, and its curves
have little or nearly no bending to either right or left ( e.g. they resemble a
linear oscillator of resonance curve) and have relatively large amplitude even
for a relatively low value of forcing amplitude P . Despite their resembles to a
linear oscillator resonance curve, the 1/3 sub-harmonic resonance curves still
have two distinct (one upper and one lower) branches which do not coalesce like
those of the hardening or softening cases.

For the cases where the softening nonlinearities in the oscillator in equation (1)
are predominately of the softening type (e.g. &, >>¢&, ) the 1/3 sub-harmonic
resonance curves bend to left and exit only for Q<3® . Starting at an
excitation frequency Q slightly above the linear natural frequency @ ,a 1/3
sub-harmonic resonance of the predominately softening oscillator of relatively
large amplitude , if exits (e.g if P>P, ,5<J, ), isexcitedina sub -
critical as Q is gradually increased . The amplitude of these resonance curves
tend to decrease monotonically with increasing excitation frequency and

eventually coalesce on the Q axis at an excitation frequency Q,slightly
belowQ =3w. For excitation frequency Q>Q_ the 1/3 sub-harmonic
resonance curves disappear. It is noted in this case of predominately softening
behaviour the amplitude of the fundamental response 4, can becomes

comparable to that of the excited 1/3 sub-harmonic resonance as  enter the
primary resonance , e.g. when Q is decreased to a value well bellow 3@ and
approaches @ . Generally speaking, Q ~<1.5®, the oscillator begins to exhibit

complicated behaviours as the 1/3 sub-harmonic attractor may coexist with the
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primary , sub-harmonics of order other than 1/3, and chaotic attractors. In this
case , the approximate solutions appear to breakdown; also the results of the
numerical solutions become difficult to interpret when this numerical
simulation is not carried out thoroughly and is not guided by more reliable
approximate analytic solutions. For this reason, the data in all the presented
figures where for excitation frequencyQ >1.5 @, (@ =1) and values of P and
o for which the fundamental amplitude is small in comparison with that of the
excited 1/3 sub harmonic response.

The stability analyses of the obtained MMS and 2MHB solutions indicate that
the upper branch of the 1/3 sub-harmonic resonance curves is stable and the
lower one is unstable. This result agrees with that presented in [1]. These results
indicate that chaotic behaviour of the present oscillator is likely to appear in a
narrow zone between the primary and 1/3 sub-harmonic zone, which is ain
agreement with the results presented in. Also, these results indicate that the

softening oscillator (e.g. the caseg, >>¢,) is more susceptible to chaotic and
aperiodic responses than the hardening one (&, << &,) at the point. Also for the

softening case, this chaotic response can occurs in the primary frequency region
(e.g. Q not far from @ ) while for the hardening type, the chaos appears to occur
away from primary resonance (e.g. 2 close to3w).

The preset results show that approximate analytic solutions aided with numerical
methods such as phase plane plots, Poincare' map, FFT spectra, and Lyapunov
exponents can be effective in studying complicated dynamic behaviours of

harmonically forced single degree of freedom nonlinear oscillators.
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RECOMMENDATIONS

The present study used first order MMS, and two modes harmonic balance
2MHB solutions and their stability analyses to study the 1/3 sub-harmonic response of
the oscillator in equation (1). The analytical approximate solutions were aided with well
known numerical simulation methods, namely phase plane plots, Poincare' maps, FFT
spectra, Lyapunov spectra and direct numerical integration. The decay time used in the
numerical simulations was about 300sec The presented results indicated that the present
oscillator have rich dynamics specially in the softening cases which cant be uncovered
using first order approximate solutions and a decay time of 300sec; i.e. a decay time of
4000 time may be needed to realistically capture a chaotic attractor.

In light of results and conclusions discussed in the previous chapter, a further
extension of the present investigation into the steady state behavior of the oscillator
given in equation (1) may consider the following:

1. Obtaining approximate 2" order MMS solution and higher order HB solutions

to the 1/3 sub-harmonic resonance response

2. Performing more though stability and bifurcation analyses of the obtained higher
order approximate solutions.

3. Allowing a much longer, say 4000 or more seconds, of transient time.

4. Obtaining approximate asymmetric solutions in addition to the symmetric ones
considered in this work and studying other order (e.g. 1/2) sub-harmonic
resonances especially for the softening case.

5. Presenting more detailed studies of the chaotic zones and the rout to chaos(

such as period doubling).
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